• Subscribe

Escape from big brother

Speed read
  • Authoritarian regimes block internet access for their citizens
  • Circumventing this censorship manually is labor-intensive and time-consuming
  • New AI detects censorship tactics and evolves to successfully evade them in real time

Internet censorship by authoritarian governments prohibits free and open access to information for millions of people around the world.

<strong>Internet censorship</strong> varies around the world, from stringent blocking in China to filtering of adult content on computers in K-12 schools in the US. But as more people use the internet for important activities, censorship has increased.

Attempts to evade this censorship have turned into an escalating race to keep up with ever-changing, increasingly sophisticated tactics. So far, censoring regimes have had the advantage, because researchers must manually search for ways to circumvent censorship, which takes a long time.

But new work by computer scientists could shift the balance of the censorship race. University of Maryland (UMD) researchers have developed a tool called Geneva (short for Genetic Evasion), which automatically learns how to circumvent censorship.

Tested in China, India, and Kazakhstan, Geneva found dozens of ways to circumvent censorship by exploiting gaps in censors’ logic and finding bugs that would have been virtually impossible for humans to identify manually.

“We are, for the first time, at a major advantage in the censorship arms race,” said Dave Levin, assistant professor of computer science at UMD. “Geneva represents the first step toward a whole new arms race in which artificial intelligence systems of censors and evaders compete with one another.”

Ultimately, winning this race means bringing free speech and open communication to millions of users around the world who currently don’t have them.

All information on the internet is broken into data packets by the sender’s computer and reassembled by the receiving computer. One prevalent form of internet censorship used by authoritarian regimes works by monitoring the data packets sent during an internet search. The censor blocks requests that either contain flagged keywords (e.g., “Tiananmen Square” in China) or prohibited domain names (e.g., “Wikipedia” in many countries). 

When Geneva is running on a computer that is sending out web requests through a censor, Geneva modifies how data is broken up and sent, so that the censor does not recognize forbidden content or is unable to censor the connection. 

Known as a genetic algorithm, Geneva is a biologically inspired type of artificial intelligence that Levin and his team developed to work in the background as a user browses the web from a standard internet browser. 

<strong>The Great Firewall of China</strong> limits access to foreign information sources, tools, and mobile apps. It also monitors internet traffic for politically sensitive language and calls to protest. Courtesy Mr. Fink. <a href='https://creativecommons.org/licenses/by-nc-sa/2.0/'>(CC BY-NC-SA-2.0)</a>Like biological systems, Geneva forms sets of instructions from genetic building blocks. But rather than basing those blocks on DNA, Geneva uses small pieces of code. Individually, the bits of code do very little, but when composed into instructions, they can perform sophisticated evasion strategies for breaking up, arranging, or sending data packets.

Geneva evolves its genetic code through successive attempts (or generations). With each generation, Geneva keeps the instructions that work best at evading censorship and kicks out the rest. Geneva mutates and crossbreeds its strategies by randomly removing instructions, adding new instructions, or combining successful instructions and testing the strategy again. Through this evolutionary process, Geneva is able to identify multiple evasion strategies very quickly.

“This completely inverts how researchers typically approach the problem of censorship,” said Levin. “Ordinarily we identify how a censorship strategy works and then devise strategies to evade it. But now we let Geneva figure out how to evade the censor, and then we learn what censorship strategies are being used by seeing how Geneva defeated them.”

The team tested Geneva in the laboratory against mock censors and in the real world against real censors. In the lab, the researchers developed censors that functioned like those known from previous research to be deployed by autocratic regimes. Within days, Geneva identified virtually all the packet-manipulation strategies that had been discovered by previously published work.

To demonstrate that Geneva worked in the real world against undiscovered censorship strategies, the team ran Geneva on a computer in China with an unmodified Google Chrome browser installed. By deploying strategies identified by Geneva, the user was able to browse free of keyword censorship.

The researchers also successfully evaded censorship in India, which blocks forbidden URLs, and in Kazakhstan, which was eavesdropping on certain social media sites at the time. In all cases, Geneva successfully circumvented censorship.

<strong>Geneva successfully overcame censorship</strong> measures, but it requires people to install the tool on their devices—which they may not want to do. If Geneva can be successfully modified to work on servers supplying blocked content, websites such as Wikipedia could be available anywhere without users putting themselves at risk.“Currently, the evade-detect cycle requires extensive manual measurement, reverse engineering, and creativity to develop new means of censorship evasion,” said Kevin Bock,  computer science Ph.D. student at UMD. “With this research, Geneva represents an important first step in automating censorship evasion.”

The researchers plan to release their data and code in the hopes that it will provide open access to information in countries where the internet is restricted. The team acknowledges that there may be many reasons why individuals living under autocratic regimes might not want or be able to install the tool on their computers. However, they remain undeterred.

The researchers are exploring the possibility of deploying Geneva on servers supplying blocked content, rather than on a computer searching for blocked content. That would mean websites such as Wikipedia or the BBC could be available to anyone inside countries that currently block them, such as China and Iran, without requiring the users to configure anything on their computer.

“If Geneva can be deployed on the server side and work as well as it does on the client side, then it could potentially open up communications for millions of people,” Levin said. “That’s an amazing possibility, and it’s a direction we’re pursuing.”

Read more:

Read the original article on UMD's site.

Join the conversation

Do you have story ideas or something to contribute? Let us know!

Copyright © 2020 Science Node ™  |  Privacy Notice  |  Sitemap

Disclaimer: While Science Node ™ does its best to provide complete and up-to-date information, it does not warrant that the information is error-free and disclaims all liability with respect to results from the use of the information.


We encourage you to republish this article online and in print, it’s free under our creative commons attribution license, but please follow some simple guidelines:
  1. You have to credit our authors.
  2. You have to credit ScienceNode.org — where possible include our logo with a link back to the original article.
  3. You can simply run the first few lines of the article and then add: “Read the full article on ScienceNode.org” containing a link back to the original article.
  4. The easiest way to get the article on your site is to embed the code below.