• Subscribe

The next big LHC upgrade? Software.

Speed read
  • LHC software is 20 years old — time for an upgrade.
  • DIANA project seeks to improve high-energy physics software.
  • Machine learning algorithms will make particle identification easier.

The World Wide Web may have been invented at the European Organization for Nuclear Research (CERN), but it was raised and cultivated abroad. Now a group of Large Hadron Collider physicists are looking outside academia to solve one of the biggest challenges in physics — creating a software framework that is sophisticated, sustainable, and more compatible with rest of the world.

“The software we used to build the LHC and perform our analyses is 20 years old,” says Peter Elmer, a physicist at Princeton University. “Technology evolves, so we have to ask, does our software still make sense today? Will it still do what we need 20 or 30 years from now?”

Elmer is part of a new initiative funded by the US National Science Foundation (NSF) called the DIANA/HEP project, or Data Intensive ANAlysis for High Energy Physics. The DIANA project has one main goal: improve high-energy physics software by incorporating best practices and algorithms from other disciplines.

“We want to discourage physics from re-inventing the wheel,” says Kyle Cranmer, a physicist at New York University and co-founder of the DIANA project. “There has been an explosion of high-quality scientific software in recent years. We want to start incorporating the best products into our research so that we can perform better science more efficiently.”

<strong>Smash! </strong>Snapshot of simulated colliding lead ions just after impact. Simulations at LHC depend on cutting edge software. Courtesy ©CERN.


DIANA is the first project explicitly funded to work on sustainable software, but not alone in the endeavor to improve the way high energy physicists perform their analyses. In 2010 physicist Noel Dawe started the rootpy project, a community-driven initiative to improve the interface between ROOT and Python.

“ROOT is the central tool that every physicist in my field uses,” says Dawe, who was a graduate student at Simon Fraser University when he started rootpy and is currently a fellow at the University of Melbourne. “It does quite a bit, but sometimes the best tool for the job is something else. I started rootpy as a side project when I was a graduate student because I wanted to find ways to interface ROOT code with other tools.”

Physicists began developing ROOT in the 1990s in the computing language C++. This software has evolved a lot since then, but has slowly become outdated, cumbersome and difficult to interface with new scientific tools written in languages such as Python or Julia. C++ has also evolved over the course of the last twenty years, but physicists must maintain a level of backward compatibility in order to preserve some of their older code.

"We want to discourage physics from re-inventing the wheel." ~Kyle Cranmer

“It’s in a bubble,” says Gilles Louppe, a machine learning expert working on the DIANA project. “It’s hard to get in and it’s hard to get out. It’s isolated from the rest of the world.” Improved interoperability will make it easier for physicists to benefit from global advancements in machine learning and data analysis.

One trend that is spreading rapidly in the data science community is the computational notebook: a hybrid of analysis code, plots, and narrative text. Project Jupyter is developing the technology that enables these notebooks. Two developers from the Jupyter team recently visited CERN to work with the ROOT team and further develop the ROOT version, ROOTbook.

“Software and technology are changing so fast,” Cranmer says. “ROOTbooks represent a confluence of two communities and two technologies.”

Physics patterns

To perform tasks such as identifying and tagging particles, physicists use machine learning. They essentially train their LHC software to identify certain patterns in the data by feeding it thousands of simulations. According to Elmer, this task is like one big 'needle in a haystack' problem.

“Imagine the book Where’s Waldo. But instead of just looking for one Waldo in one picture, there are many different kinds of Waldos and 100,000 pictures every second that need to be analyzed.”

But what if these programs could learn to recognize patterns on their own with only minimal guidance? One small step outside the LHC is a thriving multi-billion dollar industry doing just that.<strong> ACE in the hole. </strong>In the Antiproton Cell Experiment (ACE), an antiproton annihilates a proton in the nucleus of a cancer cell, with less risk of damage to healthy tissue. Software upgrades at the LHC will ensure that productive collaborations, like those between ACE researchers Michael Holzscheiter, Niels Bassler, and Helge Knudsen, will continue. Courtesy ©CERN.

“When I take a picture with my iPhone, it instantly interprets the thousands of pixels to identify people’s faces,” Elmer says. Companies like Facebook and Google are also incorporating more and more machine learning techniques to identify and catalogue information so that it is instantly accessible anywhere in the world.

Organizations such as Google, Facebook, and Russia’s Yandex are releasing more and more tools as open source. Scientists in other disciplines, such as astronomy, are incorporating these tools into the way they do science. Cranmer hopes that high-energy physics will move to a model that makes it easier to take advantage of these new offerings as well.

 “New software can expand the reach of what we can do at the LHC,” Cranmer says. “The potential is hard to guess.”

Read the original Symmetry article here.

Join the conversation

Do you have story ideas or something to contribute?
Let us know!

Copyright © 2017 Science Node ™  |  Privacy Notice  |  Sitemap

Disclaimer: While Science Node ™ does its best to provide complete and up-to-date information, it does not warrant that the information is error-free and disclaims all liability with respect to results from the use of the information.


We encourage you to republish this article online and in print, it’s free under our creative commons attribution license, but please follow some simple guidelines:
  1. You have to credit our authors.
  2. You have to credit ScienceNode.org — where possible include our logo with a link back to the original article.
  3. You can simply run the first few lines of the article and then add: “Read the full article on ScienceNode.org” containing a link back to the original article.
  4. The easiest way to get the article on your site is to embed the code below.